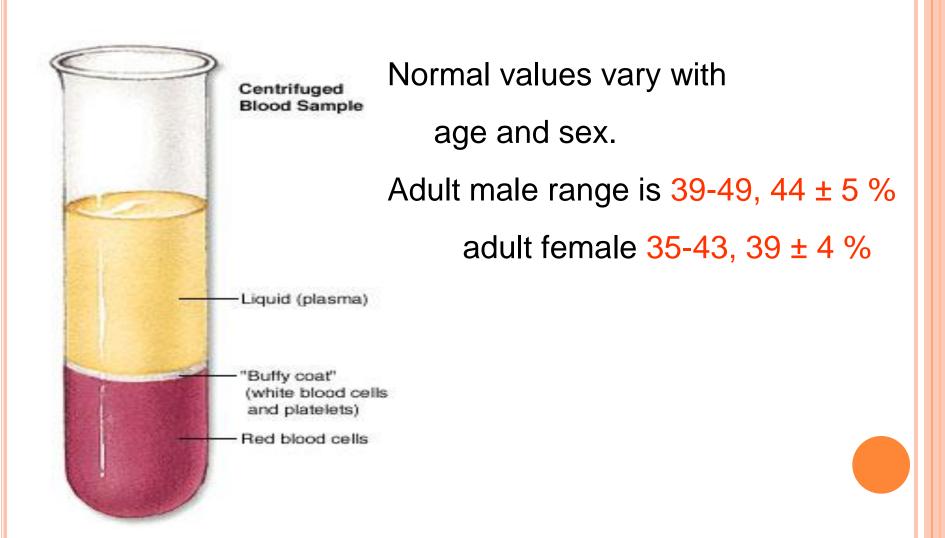
BLOOD

RNDr. Hana Zoubková, Ph.D.

BLOOD


Part of an extracellular fluid – intravascular

The blood consists of a suspension of special cells - formed elements = erythrocytes, leukocytes, thrombocytes in a liquid called plasma

In an adult man:

the blood is about 1/12th (6-8%) of the body weight and this corresponds to 4,5-6 liters

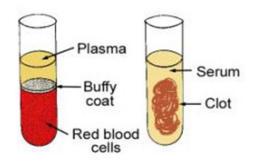
HEMATOCRIT – RELATION (VOLUME %) OF ERYTHROCYTES (45 %) TO FULL BLOOD

BLOOD FUNCTIONS

- o maintenance of homeostasis osmotic pressure stability $pH = 7.4 \pm 4$) (bicarbonate buffer system HCO_3^-)
- transport of respiratory gases: oxygen O₂ to tissues (by the hemoglobin in red cell), carbon dioxide CO₂ from tissues (by the plasma in the form of soluble carbonates HCO₃-)

of nutrients: amino acids, sugars, fatty acids

of waste products of metabolism which will be excreted through the renal filter


of hormones, enzymes, vitamins, mineral salts

- performs thermoregulation of the organism
- performs the defense of the organism

PLASMA

is a slightly alkaline fluid, with a typical yellowish color. By centrifugation can be obtained cells free **serum** - clotted

plasma - unclotted due to adding anticoagulants

It consists of 91 % water and 9% dry matter: 9/10 is made up by organic substances and 1/10 is made up by minerals. The **mineral substances** are dissolved in ionic form, positive and negative:

- main cation is sodium Na+,
- main anion is chloride Cl⁻ and bicarbonate HCO₃⁻

They maintain of osmotic pressure, blood volume, and acid-base balance

PLASMA / SERUM

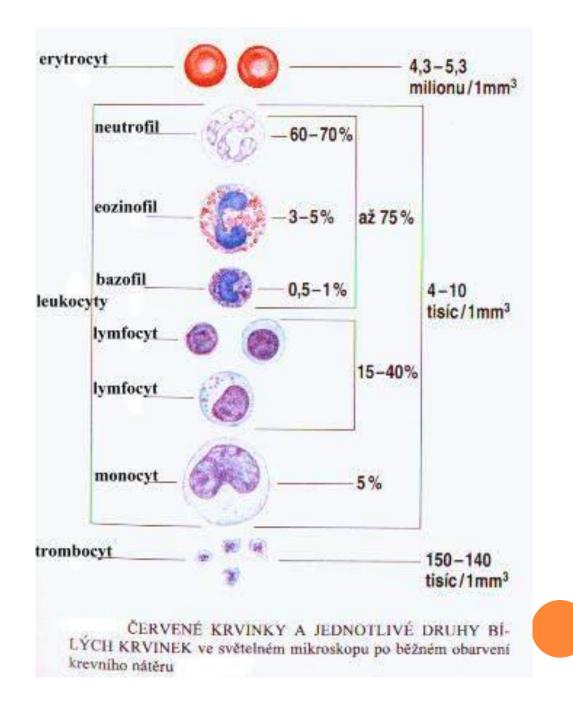
These organic substances are composed of

saccharides glucose (3,9-5,9mmol/l)

lipids cholesterol, triglycerides, phospholipids, lecithin

proteins (60-80g/I) albumins(42g/I), globulins (α,β,γ ,) fibrinogen

glycoproteins, lipoproteins, amino acids


urea, uric acid

hormones, vitamins

HEMATIC CELLS

Special cells

- o erythrocytes
- o leukocytes
- o thrombocytes
 are not considered
 real cells

ERYTHROCYTES = ERY (RED BLOOD CELLS) PROVIDING OXYGEN IN HEMOGLOBIN TO TISSUES

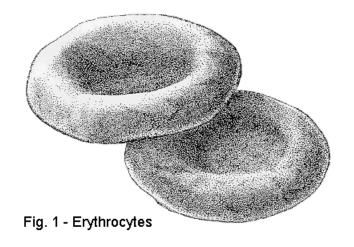
 $3.8 - 4.8 \times 10^{12}/I$ in female

 $4.3 - 5.3 \times 10^{12}/I$ in male

 $7.10^{12}/I$ in newborn

8.10¹²/l in sportsmen

size 7,2 µm in diameter


In man and in all mammals:
they are devoid of a nucleus
In the other vertebrates:
they have a nucleus

the lack of nucleus allows more room for hemoglobin =>

the shape of a biconcave lens raises the surface and cytoplasm volume ratio.

=> more efficient the diffusion of oxygen

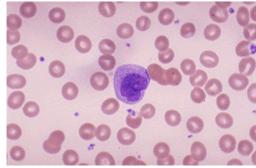
The mean life is about 120 days

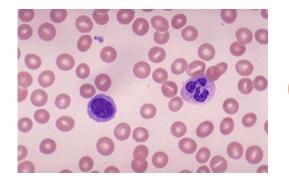
HEMOGLOBIN

- Hem and globin four protein chains HbA α2β2 at adult
 HbF α2γ2 at fetus
- Hem contains four atoms of iron. Each hemoglobin protein can bind four oxygen molecules = oxyhemoglobin.
 It depends on to temperature, pH and C0₂
- Carbon dioxide binds globin = karbaminohemoglobin
- Myoglobin and hemoglobin are able to bind oxygen because of the presence of iron atom
- HbS = mutated hemoglobin gene for sickle cell anemia.

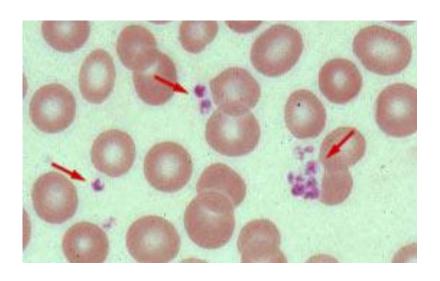
LEUCOCYTES = LEUCO (WHITE CELLS)

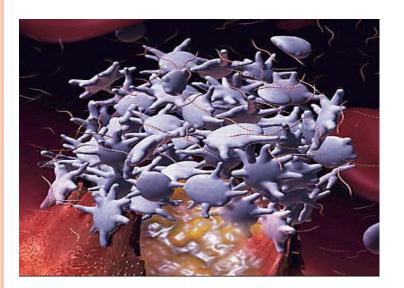
4-10 .10 9 / I, size ≥10 µm in diameter




granulocytes (presence of granules in the cytoplasm) 70% granules have a different affinity towards neutral, acid or basic stains and give the cytoplasm different colors. neutrophils 50-70%, microphages, diapedesis, chemotaxis eosinophils do 5%, diapedesis, allergy, phagocytosis basophils to 1%, histamine, heparin

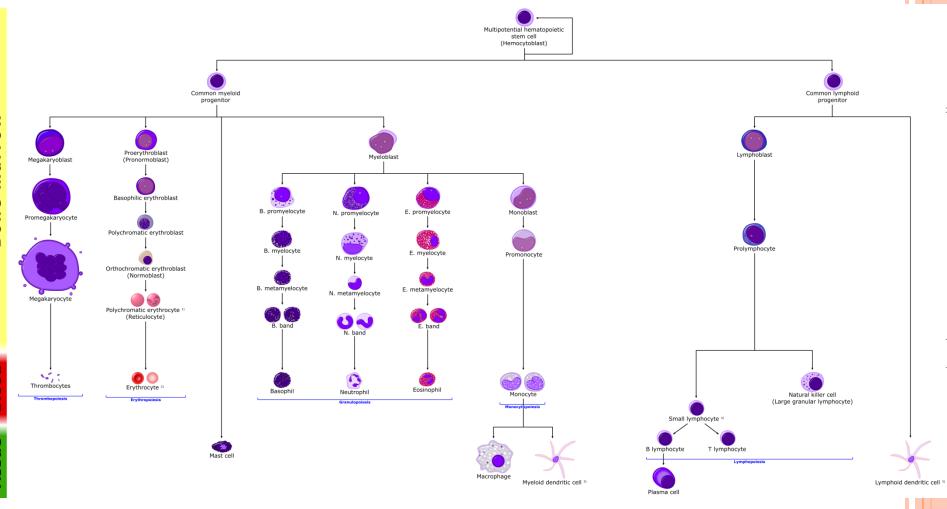
lymphocytes (right pict.) 24-40% cell and humoral immunity monocytes (left pict.) macrophages, secretion of growth





agranulocytes (lymphoid cells) 30%

THROMBOCYTES = TROM (PLATELETS)

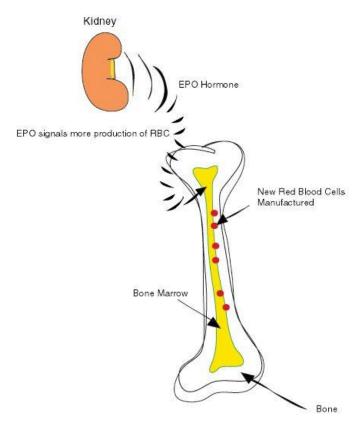

150-350 .10⁹/1

size 3µm in diameter

They are formed by the splitting of parts of the cytoplasm of megakaryocytes cells in the bone marrow.

main function: hematostasis
 to stop the loss of blood from
 wounds => they aggregate and
 release factors which promote the
 blood coagulation:
 serotonin - vasoconstriction
 fibrin - traps cells + forms clotting

HEMATOPOIESIS



STEM cells – self-renewal, differentiation

Hematopoiesis requires: iron, AA, folic acid, vitamin B12, growth factors G
CSF, GM-CSF, erythropoietin, trombopoietin

ERYTHROPOIETIN

IS CONVERTED FROM A PLASMA PROTEIN IN THE KIDNEY

Erythropoietin stimulates production of erythrocytes in the bone marrow.

A negative-feedback mechanism

- is sensitive to the amount of O_2 in the blood = tissue hypoxia:

$$\downarrow$$
 O₂ => \uparrow erythropoietin

$$\uparrow$$
 O₂ => \downarrow erythropoietin

BLOOD GROUPS

Antigens on the cell membrane of ERY determine different blood groups. The are glycoproteins and lipoproteins.

AB0 (H) System

Antigens = agglutinogens A, B, H
Antibodies = immunoglobulins = agglutinins
anti-A, anti-B

1.group A, 2.group B, 3. group AB, anti-B anti-A -

4.group 0 (with H)
anti-A anti-B

Allele	Carbohydrate		
I A	AA		
 B	Bo		
i	none		

(a) The three alleles for the ABO blood groups and their associated carbohydrates

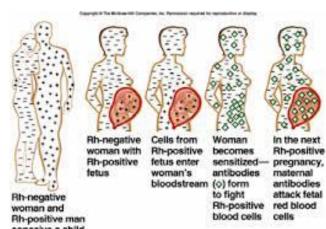
Genotype	Red blood cell appearance	Phenotype (blood group)
I ^A I ^A or I ^A i		Α
<i>l^Bl^B</i> or <i>l^Bi</i>		В
J ^A J ^B		АВ
ii		0
(b) Blood g	roup genotypes a	nd phenotypes

ABO Blood Groups

	Frequency (% U.S. Population)				RBC	Plasma	Blood	
Blood Group	White	Black	Asian	Native American	Antigens (Agglutinogens)	Illustration	Antibodies (Agglutinins)	That Can Be Received
AB	4	4	5	<1	A B	A B	None	A, B, AB, O Universal recipient
В	11	20	27	4	B Anti-A	H S	Anti-A (a)	В, О
A	40	27	28	16	A Anti-B		Anti-B (b)	Α, Ο
0	45	49	40	79	None Anti-B→		Anti-A (a) Anti-B (b)	O Universal donor

Rh System

Agglutinogens on the cell membrane of ERY: C, D, E, c, d, e.


The system does not have natively occurring antibodies. The strongest is D antigen, occurs at 85% of white population = Rh positive (+)

15% of population without is Rh negative (-)

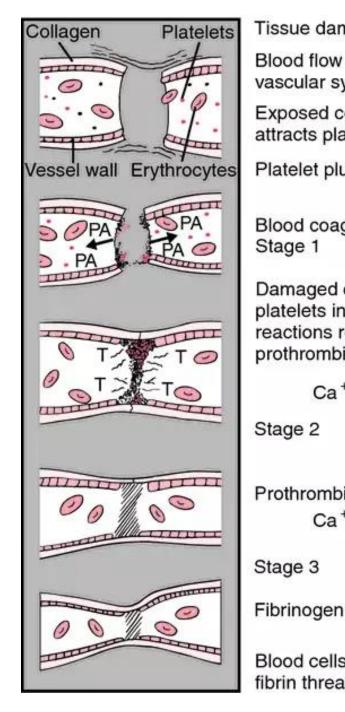
Antibodies anti-D occurs, when the Rh negative blood contacts the Rh positive blood. It happens during pregnancy, when mother is Rh neg and child (as father) is pos. When placenta is disrupted, during birth and abortion ery of the child enter mother's bloodstream. The mother produces antibodies, a production increases with the number of births,

abortions. Antibodies causes

fetal erythroblastosis

BLOOD TRANSFUSION

- A transfer of blood from a donor to recipient
- o full blood, packed red blood cells, plasma, thrombocyte
- A recipient must receives only blood of his own blood group (AB0 and Rh system).
- Crossmatching is testing before a blood transfusion


Blood Group	Antigens	Antibodies	Can give blood (RBC) to	Can receive blood (RBC) from
АВ	A and B	None	АВ	AB, A, B, O
A	A	В	A and AB	A and O
В	В	Α	B and AB	B and O
O	None	A and B	AB, A, B, O	0

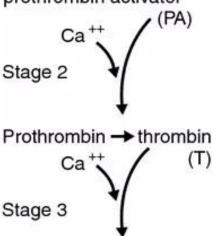
HEMOSTASIS -**BLOOD CLOTTING**

= arrest of the escape of blood by clot formation or vessel spasm

Stages:

- . Vasoconstriction
- . Platelet adhesion plug
- . Coagulation and Fibrin clot's formation with trapped cells

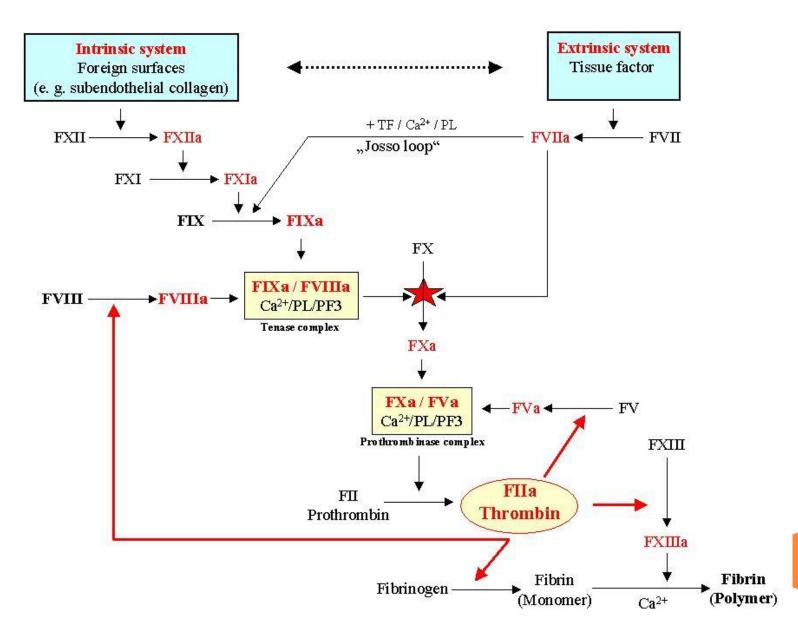
Tissue damage

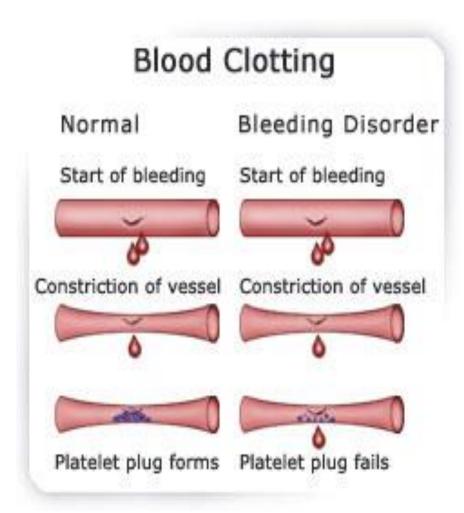

Blood flow restricted by vascular system

Exposed collagen attracts platelets

Platelet plug formation

Blood coagulation: Stage 1


Damaged cells and platelets initiate reactions resulting in prothrombin activator

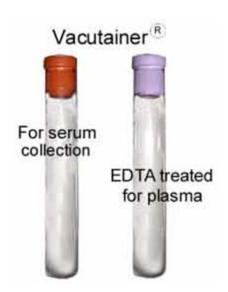

Blood cells trapped in fibrin threads. Clot formed

fibrin

BLOOD CLOTTING

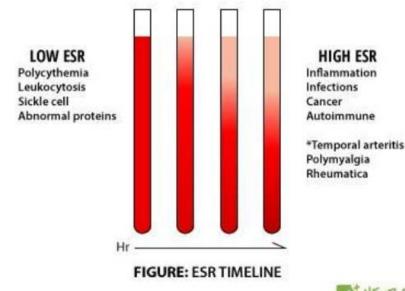
BLOOD CLOTTING

Hemophilia A


X-linked disease missing coagulation factor VIII

symptoms:

- spontaneous bleeding
- bleeding into organs (join, brain)


HOW TO TAKE INCOAGULABLE BLOOD?

- To remove calcium ions by sodium citrate
- To remove a fibrin
- To administer a heparin
- To administer a anticoagulant hirudin
- To administer an inhibitors of vitamin K kumarin

ERY SEDIMENTATION

- The erythrocyte sedimentation rate (ESR), is a measure of the settling of red blood cells in a tube during one hour. The rate is an indication of inflammation and increases in many diseases.
- ESR is increased in rheumatoid diseases, most infections, and in cancer

N NEUP-OS

LITERATURE

Biology, eighth edition, Campbell, Reece

Unit seven: Animal Form and Function

Chapter 42: Circulation and Gas Exchange

Concept 42.4

Pages 911 – 915